Scyllatoxin (Leiurotoxin-1) is a neurotoxin that was originally isolated from Leiurus quinquestriatus hebraeus. Scyllatoxin binds and blocks SK channels (small conductance Ca2+-activated K+ channels) in the brain and spinal cord and inhibits them.

Description:

Product code: N/A.Categories: KCa channels, Potassium channels.Tags: 116235-63-3, leiurotoxin, SK.

AA sequence: Ala-Phe-Cys3-Asn-Leu-Arg-Met-Cys8-Gln-Leu-Ser-Cys12-Arg-Ser-Leu-Gly-Leu-Leu-Gly-Lys-Cys21-Ile-Gly-Asp-Lys-Cys26-Glu-Cys28-Val-Lys-His-NH2Disulfide bonds between: Cys3-Cys21, Cys8-Cys 26 and Cys12-Cys28Length (aa) : 31Formula: C142H237N45O39S7Molecular Weight: 3424.1 DaAppearance: White lyophilized solidSolubility: water and saline bufferCAS number: [116235-63-3]Source: SyntheticPurity rate: > 95%

Reference:

Effect of charybdotoxin and leiurotoxin I on potassium currents in bullfrog sympathetic ganglion and hippocampal neurons

The effects of charybdotoxin and leiurotoxin I were examined on several classes of K+ currents in bullfrog sympathetic ganglion and hippocampal CA1 pyramidal neurons. Highly purified preparations of charybdotoxin selectively blocked a large voltage- and Ca(2+)-dependent K+ current (IC) responsible for action potential repolarization (IC50 = 6 nM) while leiurotoxin I selectively blocked a small Ca(2+)-dependent K+ conductance (IAHP) responsible for the slow afterhyperpolarization following an action potential (IC50 = 7.5 nM) in bullfrog sympathetic ganglion neurons. Neither of the toxins had significant effects on other K+ currents (M-current [IM], A-current [IA] and the delayed rectifier [IK]) present in these cells. Leiurotoxin I at a concentration of 20 nM had no detectable effect on currents in hippocampal CA1 pyramidal neurons. This lack of effect on IAHP in central neurons suggests that the channels underlying slow AHPs in those neurons are pharmacologically distinct from analogous channels in peripheral neurons.

Goh JW., et al. (1992) Effect of charybdotoxin and leiurotoxin I on potassium currents in bullfrog sympathetic ganglion and hippocampal neurons. Brain Res. PMID: 1280181 

An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel

We have isolated an hSK3 isoform from a human embryonic cDNA library that we have named hSK3_ex4. This isoform contains a 15 amino acid insertion within the S5 to P-loop segment. Transcripts encoding hSK3_ex4 are coexpressed at lower levels with hSK3 in neuronal as well as in non-neuronal tissues. To investigate the pharmacokinetic properties of hSK3_ex4, we expressed the isoforms hSK3 and hSK3_ex4 in tsA cells. Both isoforms were similarly activated by cytosolic Ca2+ (hSK3, EC50=0.91 +/- 0.4 microM; hSK3_ex4, EC50=0.78 +/- 0.2 microM) and by 1-ethyl-2-benzimidazolinone (hSK3, EC50=0.17 mM; hSK3_ex4, 0.19 mM). They were both blocked by tetraethylammonium (hSK3, Kd=2.2 mM; hSK3_ex4, 2.6 mM) and showed similar permeabilities relative to K+ for Cs+ (hSK3, 0.17 +/- 0.04, n=3; hSK3_ex4, 0.17 +/- 0.05, n=3) and Rb+ (hSK3, 0.79 +/- 0.04, n=3; hSK3_ex4, 0.8 +/- 0.07, n=3). Ba2+ blocked both isoforms, and in both cases, the block was strongest at hyperpolarizing membrane potentials. However, the voltage-dependence of hSK3 was stronger than that of hSK3_ex4. The most obvious distinguishing feature of this new isoform was that whereas hSK3 was blocked by apamin (Kd=0.8 nM), scyllatoxin (Kd=2.1 nM), and d-tubocurarine (Kd=33.4 microM), hSK3_ex4 was not affected by apamin up to 100 nM, scyllatoxin up to 500 nM, and d-tubocurarine up to 500 microM. So far, isoform hSK3_ex4 forms the only small-conductance calcium-activated potassium (SK) channels, which are insensitive to the classic SK blockers.

Wittekindt OH., et al. (2004) An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel. Mol Pharmacol. PMID: 14978258

Leiurotoxin I, a scorpion toxin specific for Ca(2+)-activated K+ channels. Structure-activity analysis using synthetic analogs

Recently, we reported a structure-activity relationship study on P05, a novel leiurotoxin I-like scorpion toxin which is selective for the apamin-sensitive Ca(2+)-activated K+ channel [Sabatier et al. (1993) Biochemistry 32, 2763-2770]. Arg6, Arg7 and C-terminal His31 appeared to be key residues for P05 biological activity. Owing to the high sequence identity between P05 and leiurotoxin I (87%), several analogs of leiurotoxin I (Lei-NH2) with point mutations at these positions were designed and chemically synthesized using an optimized solid-phase technique. The synthesized peptides were [L6]Lei-NH2, [R7]Lei-NH2, Lei-OH and [R7]Lei-OH, as well as fragment [R7,Abu8]N4-S11-NH2. A chimeric analog ([M22,K24,R27]Lei-NH2), which possesses part of the iberiotoxin C-terminus, was also constructed. Circular dichroism analyses of these analogs, in agreement with their structural models obtained by molecular dynamics, showed that the point mutations did not significantly affect the overall secondary structures, as compared to natural Lei-NH2. All the peptides and natural toxins were compared in vitro for their capacity to inhibit binding of [125I]-apamin to rat brain synaptosomes, and in vivo for their specific neurotoxicity in mice. The Arg6 residue was essential for high biological activity of leiurotoxin I. Further, substitution of Met7 in the natural toxin by Arg7, or C-terminal amidation of His31, greatly increased affinity for the apamin receptor but did not significantly affect toxin neurotoxicity. Remarkably, the chimeric analog [M22,K24,R27]Lei-NH2 was found to retain leiurotoxin I-like activity, thus indicating that the negatively charged residues Asp24 and Glu27 (and Ile22) are not directly involved in the high toxin bioactivity. However, the chimeric molecule had no iberiotoxin-like effect on rat muscular maxi-K+ channels incorporated in lipid bilayers.

Sabatier JM., et al. (1994) Leiurotoxin I, a scorpion toxin specific for Ca(2+)-activated K+ channels. Structure-activity analysis using synthetic analogs. Int J Pept Protein Res. PMID: 8070973

Scyllatoxin, a blocker of Ca(2+)-activated K+ channels: structure-function relationships and brain localization of the binding sites

Chemical modifications of scyllatoxin (leiurustoxin I) have shown that two arginines in the sequence, Arg6 and Arg13, are essential both for binding to the Ca(2+)-activated K+ channel protein and for the functional effect of the toxin. His31 is important both for the binding activity of the toxin and for the induction of contractions on taenia coli. However, although its iodination drastically decreases the toxin activity, it does not abolish it. Chemical modification of lysine residues or of Glu27 does not significantly alter toxin binding, but it drastically decreases potency with respect to contraction of taenia coli. The same observation has been made after chemical modification of the lysine residues. The brain distribution of scyllatoxin binding sites has been analyzed by quantitative autoradiographic analysis. It indicates that apamin (a bee venom toxin) binding sites are colocalized with scyllatoxin binding sites. The results are consonant with the presence of apamin/scyllatoxin binding sites associated with Ca(2+)-activated K+ channels. High-affinity binding sites for apamin can be associated with very-high-affinity (less than 70 pM), high-affinity (approximately 100-500 pM), or moderate-affinity (greater than 800 pM) binding sites for scyllatoxin.

Auguste P., et al. (1992) Scyllatoxin, a blocker of Ca(2+)-activated K+ channels: structure-function relationships and brain localization of the binding sites. Biochemistry.  PMID: 1731919

Purification and characterization of a unique, potent inhibitor of apamin binding from Leiurus quinquestriatus hebraeus venom

An inhibitor of apamin binding has been purified to homogeneity in three chromatographic steps from the venom of the scorpion, Leiurus quinquestriatus hebraeus. The inhibitor, which we have named leiurotoxin I, represents less than 0.02% of the venom protein. It is a 3.4-kDa peptide with little structural homology to apamin although it has some homology to other scorpion toxins such as charybdotoxin, noxiustoxin, and neurotoxin P2. Leiurotoxin I completely inhibits 125I-apamin binding to rat brain synaptosomal membranes (Ki = 75 pM). Thus, it is 10-20-fold less potent than apamin. Leiurotoxin I is not a strictly competitive inhibitor of this binding reaction. Like apamin, leiurotoxin I blocks the epinephrine-induced relaxation of guinea pig teniae coli (ED50 = 6.5 nM), while having no effect on the rate or force of contraction in guinea pig atria or rabbit portal vein preparations. Thus, leiurotoxin I of scorpion venom and apamin of honeybee venom demonstrate similar activities in a variety of tissues, yet are structurally unrelated peptides. These two peptides should be useful in elucidating the role of the small conductance, Ca2+-activated K+ channels in different tissues.

Chicchi GG., et al. (1988) Purification and characterization of a unique, potent inhibitor of apamin binding from Leiurus quinquestriatus hebraeus venom. PMID: 2839478

Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata

Purkinje cells have specialized intrinsic ionic conductances that generate high-frequency action potentials. Disruptions of their Ca or Ca-activated K (KCa) currents correlate with altered firing patterns in vitro and impaired motor behavior in vivo. To examine the properties of somatic KCa currents, we recorded voltage-clamped KCa currents in Purkinje cell bodies isolated from postnatal day 17-21 mouse cerebellum. Currents were evoked by endogenous Ca influx with approximately physiological Ca buffering. Purkinje somata expressed voltage-activated, Cd-sensitive KCa currents with iberiotoxin (IBTX)-sensitive (>100 nS) and IBTX-insensitive (>75 nS) components. IBTX-sensitive currents activated and partially inactivated within milliseconds. Rapid, incomplete macroscopic inactivation was also evident during 50- or 100-Hz trains of 1-ms depolarizations. In contrast, IBTX-insensitive currents activated more slowly and did not inactivate. These currents were insensitive to the small- and intermediate-conductance KCa channel blockers apamin, scyllatoxin, UCL1684, bicuculline methiodide, and TRAM-34, but were largely blocked by 1 mM tetraethylammonium. The underlying channels had single-channel conductances of ∼150 pS, suggesting that the currents are carried by IBTX-resistant (β4-containing) large-conductance KCa (BK) channels. IBTX-insensitive currents were nevertheless increased by small-conductance KCa channel agonists EBIO, chlorzoxazone, and CyPPA. During trains of brief depolarizations, IBTX-insensitive currents flowed during interstep intervals, and the accumulation of interstep outward current was enhanced by EBIO. In current clamp, EBIO slowed spiking, especially during depolarizing current injections. The two components of BK current in Purkinje somata likely contribute differently to spike repolarization and firing rate. Moreover, augmentation of BK current may partially underlie the action of EBIO and chlorzoxazone to alleviate disrupted Purkinje cell firing associated with genetic ataxias.

Benton MD., et al. (2013) Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata. J Neurophysiol. PMID: 23446695